

Topic Brief | Copyright Lionbridge 2009 | Page 1 | TB-179-0709-1

INTERNATIONALIZATION OF DATA VALIDATION

AND CHARACTER PROCESSING

Many applications contain some form of logic related to

parsing or processing text entered by a user or text data

received from a system interface. This logic can deal

with the text value as a single element or it could

attempt to process the individual characters. In either

case, the logic could contain code and data specific to a

certain locale that may not work internationally.

One of the most common expectations is that this

occurs only with legacy code such as C and C++

that, by default, uses single byte character string

data types. However, new applications based on

code that, by default, use Unicode character string

data types, such as Java and .NET, can also contain

internationalization issues. Also, some issues may

be concealed by implicit character processing in

logic that is more specifically used for other data

types such as numeric or date-time types.

Legacy code that is not Unicode enabled performs

string processing on byte boundaries rather than on

character boundaries. This can cause the code to

interpret the value of the characters incorrectly.

For example, if a double-byte Unicode string is

read in by an application, the code may see the

second byte has a value of zero, assume this is the

end-of-string null byte indicator, and incorrectly

think the string is only one character long.

Similarly if a general multi-byte-character string is

read in by an application, the code can interpret

each byte as a character and may not be able to

interpret the string correctly.

Some legacy applications can be made to run

correctly for some additional locales; however, to

gain true internationalization the code generally

must be modified to use “wide character” strings

and functions to interpret multi-byte data correctly.

Often times this process is very involved,

especially for code that performs pointer arithmetic

to navigate through strings, searches for characters

or substrings in a string, or otherwise parses and

processes strings and substrings.

An alternative fast-track to multi-byte enabling (to

avoid re-writing code to use special data types and

functions) is to convert character encoding to UTF-

8 (a special Unicode transformation encoding) at

subsystem boundaries. UTF-8 has the interesting

property that it introduces multi-byte character

strings while uniquely and unambiguously

preserving ASCII characters without any byte-

level misinterpretations like those abovementioned.

So if one is only parsing subsequences delimited

by various ASCII substrings, without any need to

do anything more than pass-through non-ASCII

characters, using UTF-8 is a good approach

because it can eliminate worries about whether any

of the byte-level processing is multi-byte safe.

Even when Unicode string data types are used in

an application, there can still be character

processing issues. These issues may be associated

with data validation processing; however, they can

appear in other functionality also.

One of the most popular business logic rules built

into applications is that user names and passwords

must have certain criteria, such as at least one

upper case letter, at least one lower case letter, at

least one number, and so forth. Sometimes logic

like this is implemented in a manner where the

code checks if a character is between “a” and “z”

or “A” and “Z” or “0” and “9”.

In many cases, this code can be converted to use

methods like isDigit, isUpperCase, isLowerCase,

etc., to avoid issues in locales with additional

characters in their alphabet, locales that don’t use

the ASCII alphabet at all, and locales that use

alternate representations to Western-style digits. In

Topic Brief

Topic Brief | Copyright Lionbridge 2009 | Page 2 | TB-179-0709-1

other cases, such as regular expressions, other

solutions could be more appropriate.

Some code attempts to parse numeric or currency

values and assumes that characters like “- , . and $”

are used for the purposes that they are in the

United States. This type of code also generally

expects these characters to be in the same position

within a valid numeric or currency value as they

appear in the United States. These situations can be

addressed in some system or other i18n-enabled

libraries that have functionality to return

appropriate values for separator, currency, and

negative value strings and their positioning

information. However, this is typically more

complicated than simply passing the complete

string entered by a user to a method that validates

and converts the value to a native data type such as

Decimal.Parse,

NumberFormat.getCurrencyInstance().Parse,

Double(string), and so forth.

In some unusual circumstances Unicode string data

is converted to another data type such as Byte and

then processing occurs on the converted data. If

the processing is ambivalent to the contents of the

data, the code may work fine internationally.

However, if the processing parses the contents or

makes assumptions about the content size and

structure, errors can occur. One potential problem

could be reading or writing Byte data to a file.

Some development tools perform implicit

conversions between Unicode and native character

encoding when reading and writing files. This

conversion may not occur for Byte data and

application code, or the consumers of the files may

not recognize the encoding being used.

In conclusion, application code should use

Unicode string data types and be careful of

conversions to and from other data types.

Application code should also use built-in parsing

and validation functionality as much as possible to

avoid issues when assumptions based on the locale

of the developers are not held globally.

About Lionbridge

Lionbridge (Nasdaq: LIOX) is the leading provider of

translation, localization, and testing services.

Organizations in all industries rely on Lionbridge

language and testing services to increase international

market share, speed adoption of products and content,

and ensure the integrity of their global brands. Based in

Waltham, Mass., Lionbridge operates across 26 countries,

and provides services under the Lionbridge and

VeriTest® brands.

Corporate Headquarters

Lionbridge

1050 Winter Street

Waltham, MA 02451

USA

www.lionbridge.com

