

Topic Brief | Copyright Lionbridge 2009 | Page 1 | TB-178-0709-1

INTERNATIONALIZATION BEST PRACTICES

FOR DATE-TIME FORMATTING

Date and time formatting issues occur in practically any

software application, and there is a high probability that

errors go silently undetected.

One best practice for handling date and time related

information is also a general purpose best practice

across all software development: keep data in native

format as long as possible and only convert to other

types when necessary at the outer boundaries of the

application. For example, use date and time data types

such as struct tm, time_t, Date, DateTime, etc., to hold

date and time data and use them throughout your

application processing. Only convert these values to

character strings, if necessary, when performing

operations such as displaying values in a user interface,

accepting input from a user, or passing data to a system

interface that requires string values. Never pass locale-

formatted strings across a subsystem interface unless it

is really required.

Native date and time data types store their data in a

locale-neutral format so every consumer of that data

knows its value exactly. Date-time formatting varies

internationally, so the value “8/25/2008 9:12PM” in the

United States could be represented as a number of

different strings depending on the locale of the end user.

Some examples of formatted strings in other locales are:

 25/08/2008 21:12

 25.08.2008 21:12

 2008/8/25 下午 09:12

 25/8/2008 PM 9:12

 2008-08-25 21:12

Obviously, if the date format used includes a month or

day name, the long format strings might be different for

each language, even if the general short format were the

same between locales

Many external system libraries or internal libraries

within a development environment provide support that

helps format and parse strings in these localized formats.

However, due to the complexity and variation of

formats, some are overly lenient in their attempt to parse

and recognize the actual value represented. For example,

some library functions or methods may attempt to parse

the date string with a variety of separator characters. If

an application is executing with a locale that uses a

format of “MM/dd/yyyy” and a user from a different

locale accidentally enters a value with a format

“dd.MM.yyyy,” the application code silently accepts an

incorrect date format. For example, if the user enters

“05.02.2008,” it could be accepted and interpreted as

May 2, 2008 rather than February 5, 2008 as the user

intended.

This is particularly important in applications that

support multiple locales, such as localized client

applications or web pages communicating with the same

server code. If an application carries date-time data

values around in string variables, then it not only greatly

increases the chance that a value is misinterpreted, but it

also must retain the locale the date-time value was

meant for throughout the application so the value can be

interpreted correctly. Whereas converting the data to a

date-time data type as soon as the value is entered

allows the rest of the application to understand the value

without question and without caring what locale the end

user was using.

To help mitigate potential user data entry errors, in

cases where dates and times are commonly entered and

users can be from multiple locales, an application can

Topic Brief

Topic Brief | Copyright Lionbridge 2009 | Page 2 | TB-178-0709-1

display the format expected as text on the data entry

form and force the development tool to explicitly accept

a certain format only. In these cases, it is important to

ensure that the text displayed as the standard format is

programmatically generated based on the current locale.

It may also be helpful to include the expected format

string in error messages informing the user they have

entered an invalid value.

Another mechanism to help mitigate data entry errors is

to separate date-times into their component parts for

data entry—for example, different fields for each of the

month, day, year, hour, minute, and am/pm indicator.

In these cases, it is important to ensure that the

development tools have the ability to arrange the fields

in different orders for certain locales, that some fields

may not appear in some locales (such as am/pm

indicator) and that data values used as defaults or for

validation can change based on locale (acceptable

values for hours may be 1 through 12 or 0 through 23

depending on locale).

In some cases, especially service or system interfaces,

date-time data is explicitly represented as a string. This

allows two communicating processes to interact with

each other without having to know the architecture and

internal representation of native date-time data types of

the other process. In these cases, the best practice is to

always use a standardized locale-neutral date-time

format for the strings being passed. For example, the

W3C definition of the XML dateTime data type uses the

same order of component fields, the same separator

characters, and the same acceptable data values without

regard to locale. So, the data value can be understood in

any locale. This format is also the same as specified by

the ISO 8601 standard and is generally accepted by

default by development tools or products, such as

databases.

This does require some extra work to convert between

locale-neutral and locale-specific format each time the

service boundary is exercised; however, it eliminates

ambiguity, reduces the potential for misinterpretation,

and allows each side of the interface to execute

independently without regard to the locale of the other

side of the interface.

Using native date-time data types, as discussed

previously, complements the use of standardized locale

neutral strings for service and system interfaces since it

is very easy to convert a native date-time data type to

and from a standardized locale-neutral string. These

types of conversion functions are included in many

development tools. In applications that contain little

date-time information, or where it is not a common or a

main component of the application, it can be acceptable

to display data using a standard international format,

such as ISO 8601, which will also make conversions

from native data types to display formats easily

accomplished in all locales.

In conclusion, a best practice end-to-end application

uses locale-specific strings at the outer (end user facing)

edge of the application, converts to native date-time

data types as soon as possible, uses the native date-time

data types for business logic and as many service and

system interfaces as possible (such as a database

interface) and converts native date-time data types to a

standardized locale-neutral string format for other

service and system interfaces that require this format.

About Lionbridge

Lionbridge (Nasdaq: LIOX) is the leading provider of

translation, localization, and testing services.

Organizations in all industries rely on Lionbridge

language and testing services to increase international

market share, speed adoption of products and content,

and ensure the integrity of their global brands. Based in

Waltham, Mass., Lionbridge operates across 26 countries,

and provides services under the Lionbridge and

VeriTest® brands.

Corporate Headquarters

Lionbridge

1050 Winter Street

Waltham, MA 02451

USA

www.lionbridge.com

