

Topic Brief | Copyright Lionbridge 2009 | Page 1 | TB-180-0709-1

INTERNATIONALIZATION BEST PRACTICES

FOR NUMERIC FORMATTING

Often times when people think of internationalization

(i18n), they limit their scope of thought to linguistic

aspects such as string externalization and concatenation,

searching, and sorting. These aspects may represent the

bulk of the i18n work; however, dealing with numeric

formatting issues can also be very important and

sometimes cause errors that silently go undetected.

One best practice for handling numeric data is also a

general purpose best practice across all software

development: keep data in its native format as long as

possible and only convert to other types when necessary,

at the outer boundaries of the application. For example,

use numeric data types such as double, int, Decimal,

Float, Long, etc., to hold numeric data and use them

throughout your application processing. Only convert

these values to character strings when performing

operations such as displaying values in a user interface,

accepting input from a user, or passing data to a system

interface that requires string values. Never pass locale-

formatted data across a subsystem boundary unless it is

really needed!

Native numeric data types such as double, int, Decimal,

etc., store their data in a locale neutral format, so every

consumer of that data knows exactly what the value is.

Numeric formatting varies internationally, so the logical

value -1234.56 could be represented as a number of

different strings depending on the locale of the end user.

Some examples of formatted strings are:

 -1,234.56

 -1.234,56

 (1,234.56)

 -1 234.56

 -1'234.56

Many external system libraries or internal libraries

provide support that help format and parse strings in

these localized formats. However, due to the complexity

and variation of formats, some are overly lenient in their

attempt to parse and recognize the actual value

represented. For example, some tools simply look for

grouping (thousands) separators and decimal separators

without trying to validate positioning. If an application

is executing with a locale that uses a comma as a

grouping separator and a user from a different locale

accidentally inputs a value string of 1,23 (representing

one and 23 hundredths in most European locales), the

application may assume this is the value 1230 (one

thousand two hundred and thirty) and silently proceed

without raising an exception or generating an error.

This is particularly important in applications that

support multiple locales, such as localized client

applications or web pages communicating with the same

server code. If an application carries numeric data

values around in string variables, then it not only greatly

increases the chance that a value is misinterpreted, but it

also must retain the locale the numeric value was meant

for throughout the application, so the value can be

interpreted correctly. Whereas, converting the data to a

numeric data type as soon as the value is entered allows

the rest of the application to understand the value

without question and without caring what locale the end

user was using.

In some cases, especially service or system interfaces,

numeric data is explicitly represented as a string. This

allows two communicating processes to interact with

each other without having to know the architecture and

internal representation of numeric data types of the

other process. In these cases, the best practice is to

always use a standardized locale-neutral numeric format

for the strings being passed. For example, the W3C

Topic Brief

Topic Brief | Copyright Lionbridge 2009 | Page 2 | TB-180-0709-1

definition of the XML decimal data type uses the same

sign characters (+ or -) which are always in the

beginning of the string when specified, uses no

grouping separator, and always uses the same decimal

character (period) without regard to locale. So, the data

value can be understood in any locale.

This does require some extra work to convert between

locale neutral and locale specific format each time the

service boundary is exercised; however, it eliminates

ambiguity, reduces the potential for misinterpretation,

and allows each side of the interface to execute

independently without regard to the locale of the other

side of the interface.

Using native numeric data types, as discussed

previously, complements the use of standardized locale-

neutral strings for service and system interfaces since it

is very easy to convert a native numeric data type such

as double to and from a standardized locale-neutral

string. These types of conversion functions are included

in many development tools.

In conclusion, a best practice end-to-end application

uses locale specific strings at the outer, end-user facing

edge of the application, converts to native numeric data

types as soon as possible, uses the native numeric data

types for business logic and as many service and system

interfaces as possible (such as a database interface), and

converts native numeric data types to a standardized

locale-neutral string format for other service and system

interfaces that require this format.

About Lionbridge

Lionbridge (Nasdaq: LIOX) is the leading provider of

translation, localization, and testing services.

Organizations in all industries rely on Lionbridge

language and testing services to increase international

market share, speed adoption of products and content,

and ensure the integrity of their global brands. Based in

Waltham, Mass., Lionbridge operates across 26 countries,

and provides services under the Lionbridge and

VeriTest® brands.

Corporate Headquarters

Lionbridge

1050 Winter Street

Waltham, MA 02451

USA

www.lionbridge.com

